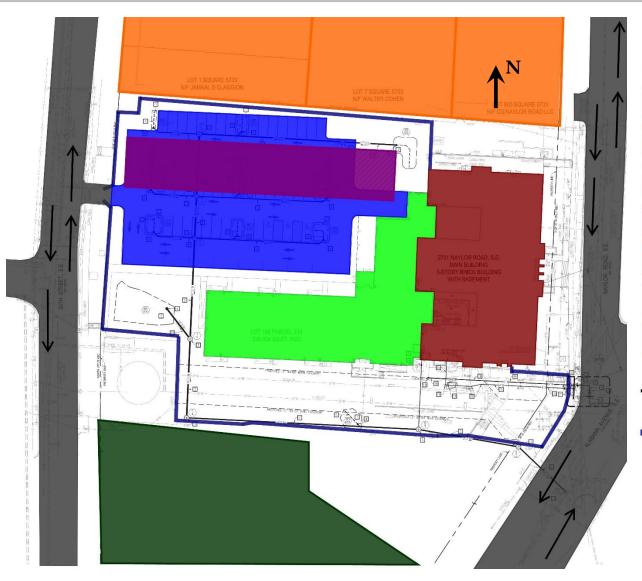
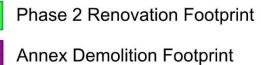


Stanton Elementary School Washington, D.C.


SISTERIOLOU

Ryan DeJesso Advisor: Dr. Somayeh Asadi

Introduction	Occupancy: I
Piping Value Engineering Depth	Size: 83,700 s
Structural Breadth	Number of St
Acoustical Breadth	Owner: Depa
BIM Research	Construction
Recommendations	Project Cost:
Conclusion	Delivery Met
	Dhaga 1 Cana


Introduction

- Educational
- square feet
- **Stories:** 3 above grade + Basement
- partment of General Services (DGS)
- on Manager: Tompkins Builders
- **t:** \$32 million
- ethod: Design-Build with GMP
- **Phase 1 Construction:** June 20, 2014 October 24, 2014
- **Phase 2 Construction:** March 31, 2015 April 18, 2016

Key

Existing Building Footprint

Stanton Elementary Sports Fields

Neighboring Buildings

.....

School Parking Lot

Site Fence

Introduction	Depth Topic
Piping Value Engineering Depth	Depth Topic
Structural Breadth	Depth Topic
Acoustical Breadth	Acoustical B
BIM Research	
Recommendations	Structural B
Conclusion	Research Top

Introduction

- ic 1: Short Interval Production Scheduling
- ic 2: Project Re-phasing
- ic 3: Piping Value Engineering
- Breadth: Classroom Acoustics Analysis
- Breadth: Foundation Redesign
- **Copic: BIM on Smaller Projects**

Piping Value Engineering Depth Structural Breadth Acoustical Breadth BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Introduction

- Depth Topic 1: Short-interval Production Scheduling
- Depth Topic 2: Project Re-phasing
- Depth Topic 3: Piping Value Engineering
- Acoustical Breadth: Classroom Acoustics Analysis
- Structural Breadth: Foundation Redesign
- **Research Topic: BIM on Smaller Projects**

Piping Value Engineering Depth

Structural Breadth

Acoustical Breadth

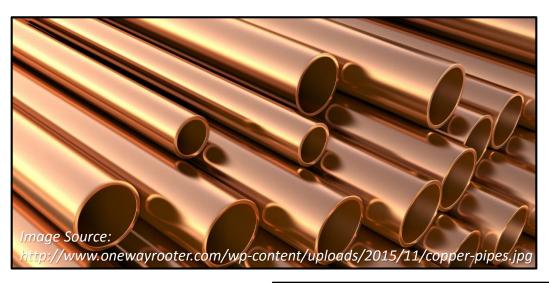
BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Construction Depth: Piping Value Engineering


Piping Value Engineering

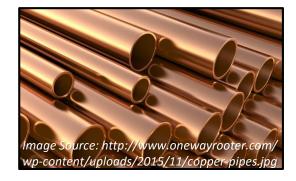
Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations
Conclusion

Reasons for Analysis:

- Project financing issues throughout project
- Construction manager advised by owner to identify potential value engineering solutions
- PVC piping cheaper material and installation costs than copper piping

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Cost Comparison: Initial Costs


Introduction	Detailed Esti
Piping Value Engineering Depth	 Assumptions
Structural Breadth	Copper T
Acoustical Breadth	 PVC Pipi
BIM Research	Perform take
Recommendations	• Use RS Mean
Conclusion	

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

timate Process

- lS
- Tubing Type L
- ping Schedule 40
- keoffs for all pipe lengths, fittings, and valves
- eans cost data to perform estimate

Initial Cost Comparison

\$191,600

PVC Piping

\$141,340

Copper Piping

Introduction	Maintenan
Piping Value Engineering Depth	• Inconsister
Structural Breadth	• Pipe s
Acoustical Breadth	• Compa
BIM Research	Durations PVC and c
Recommendations	
Conclusion	• PVC typic items with

Cost Comparison: Maintenance Costs

nce Costs

- encies in RS Means maintenance cost data for: sizes
- parable data between PVC and copper piping
- for maintenance and replacement were similar for copper piping
- ically cheaper to replace for unit cost data for similar thin RS Means

RS Means No.	System Description	Frequency (Years)	Crew
Copper Piping	·		
D2023 110 0010	Resolder Joint Measure, cut & ream both ends Solder fitting	10	1 PLUM
D2023 110 0020	Replace 3/4" copper pipe and fittings Remove old pipe Install copper tube with couplings and hangers	20	2 PLUM
D2023 110 0030 - D2023 110 0080	Replace (1" – 8") copper pipe and fittings Remove old pipe Install (1" – 8") copper tube with couplings and hangers	25	2 PLUM
PVC Piping			
D2023 130 0210	Reglue joint, install 1-1/2" Tee Cut existing pipe, install tee 1-1/2" Inspect joints	10	1 PLUM
D2023 130 0310	Reglue joint, install 2" Tee Cut existing pipe, install tee 2" Inspect joints	10	Q-1
D2023 130 2030 – D2023 130 2230	Replace 1000' PVC pipe (1" – 1-1/2") diameter Remover broken pipe Install 1000' new PVC pipe 2" diameter Inspect joints	30	1 PLUM
D2023 130 2330	Replace 1000' PVC pipe 2" diameter Remover broken pipe Install 1000' new PVC pipe 2" diameter Inspect joints	30	Q-1

Cost Comparison: Recycling Costs

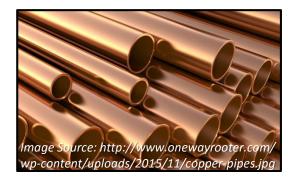
Introduction	
--------------	--

Structural Breadth

Acoustical Breadth

BIM Research

Recommendations


Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Copper Recycling Payback

Pipe SizeTotal Pipe Length (LF)		Weight (lbs/ft)		Total Weight (lbs)	
1/2"	756		0.285		215.5
3/4"	556.2		0.455		253.1
1"	1140.5		0.655		747.0
1-1/4" 52.8		0.884		46.7	
1-1/2"	1-1/2" 88.8		1.14		101.2
2″ 552.5		1.75		966.9	
3″ 389.6		3.33		1297.4	
4" 297.2			5.38		1598.9
Total Copper Weight (lbs)5226.64			5226.64		
Total Weight (lbs)		Cost Per	ost Per Pound Tota		al Scrap Cost
5226.64			\$1.968/lb		\$10,286.04

Scheduling Comparison

1334 labor hours

PVC Piping

1228 labor hours

Copper Piping

PVC Time Savings

106 hours (13 construction days)

Piping Value Engineering Depth Structural Breadth Acoustical Breadth

BIM Research

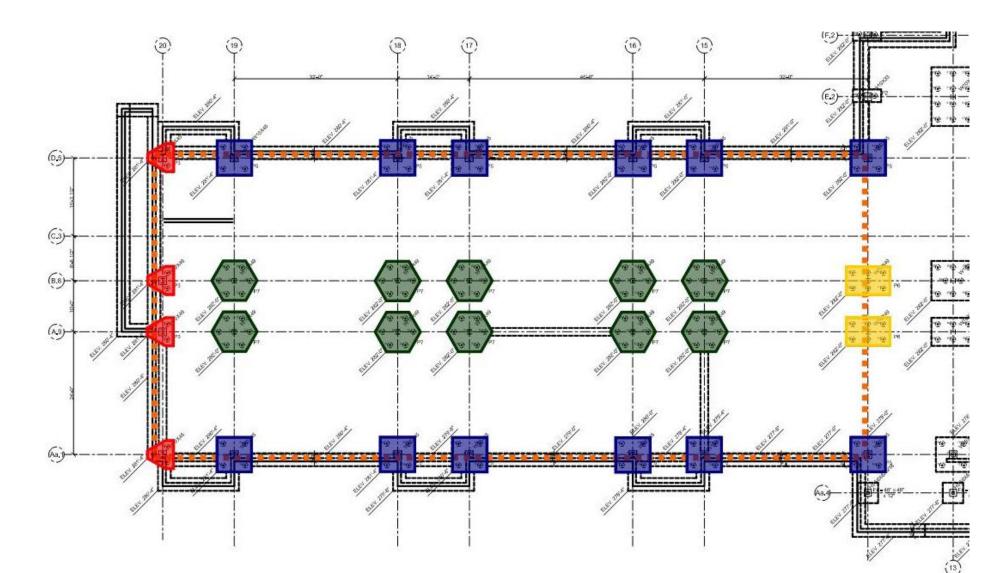
Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi Structural Breadth: Pre-kindergarten Wing Foundation Redesign

Introduction	Reasons for
Piping Value Engineering Depth	• Plan for pot
Structural Breadth	
Acoustical Breadth	• Site is fairly
BIM Research	• Determine i
Recommendations	conditions f
Conclusion	

Structural Breadth


- or Analysis:
- otential future building addition
- ly small, best option for addition would be vertically
- if existing foundations can support loading for two additional floors

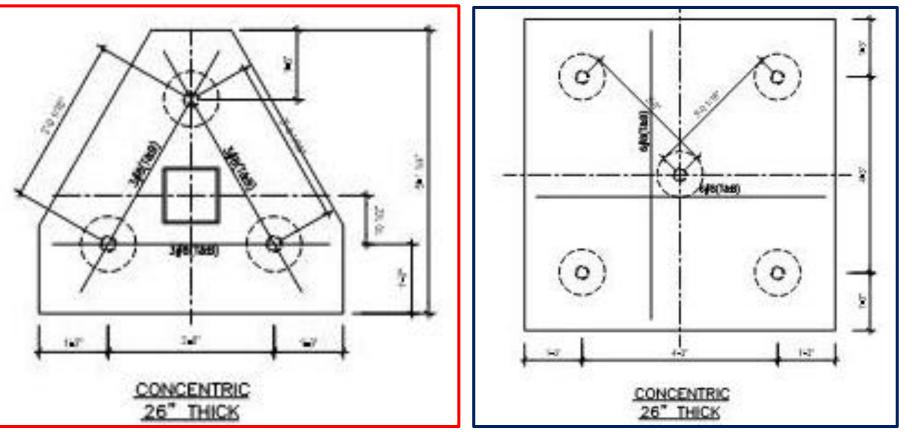
Introduction			
Piping Value Engineering Depth			
Structural Breadth			
Acoustical Breadth			
BIM Research			
Recommendations			
Conclusion			

Foundation System

- **Existing Foundation System**
- Helical piles and pile cap system
- Pre-kindergarten wing uses a variety of 28 pile caps spread over approximately
- Pile cap sizes use 3, 5, 6, or 7 helical piles based on column loading conditions

Piping Value Engineering Depth

Structural Breadth

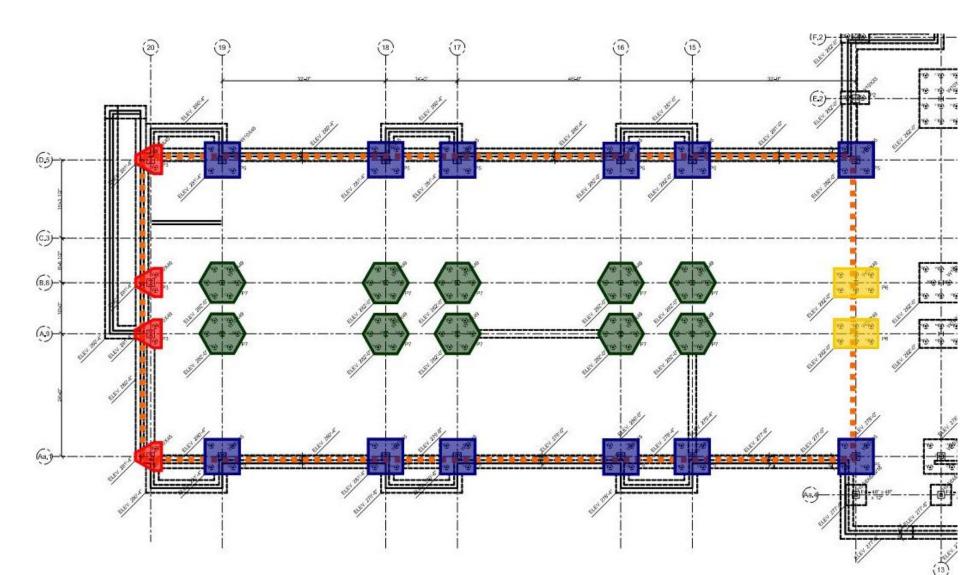

Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi


Pile Cap P3

- 3 Piles
- 20.95 ft² area

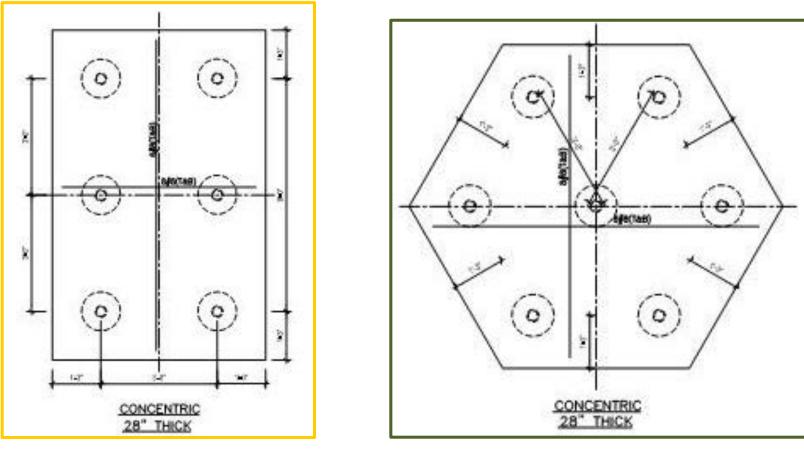
Foundation System

Pile Cap P5

- 5 Piles
- 6' 9" x 6' 9" (45.56 ft² area)

Piping Value Engineering Depth

Structural Breadth


Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Pile Cap P6

- 6 Piles
- 5' 6" x 8' 6" (38.35 ft² area)

Foundation System

Pile Cap P7

- 7 Piles
- 51.65 ft² area

Introduction	Column Loa
Piping Value Engineering Depth	Classroom Liv
Structural Breadth	Hallway Live
Acoustical Breadth	Hallway Live
BIM Research	Roof Live Loa
Recommendations	Dead Loads: 4
Conclusion	Snow Loads: 3

Foundation Loading

Dading Conditions

- ive Loads: 55 psf + 10 psf for partitions
- E Loads (Floor 1): 100 psf
- **Loads (Floors 2+): 80 psf**
- bads: 20 psf
- 40 psf
- 30 psf

Column Sizing

- Column Sizing determined from AISC Steel Construction Manual, 14th ed.
- Columns determined to be W8x33 on 2nd and 3rd floors.
- Existing columns are capable of transferring additional loading

Foundation Sizing

Use ASD loading + column self weight ۲

Introduction	
Piping Value Engineering Depth	
Structural Breadth	
Acoustical Breadth	
BIM Research	
Recommendations	
Conclusion	

Findings:

At pile cap locations B.8-14 and A.9-14, calculated loading was determined to be greater than the maximum loading condition on the pile cap.

Recommendation:

Keep all pile cap designs the *except* columns B.8-14 and A.9-14. Redesign these pile caps as P7 pile caps.

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Structural Breadth

	Total Load on	Existing	Existing		Existing Loading	Is Existing Design	Recommended
Column		Loading (kip)	Design	# of Piles	Potential (kip)	Sufficient?	Design
D.5-20	50.6	65	P3	3	120	YES	Remain the Same
D.5-19	162.7	175	P5	5	200	YES	Remain the Same
D.5-18	162.7	175	P5	5	200	YES	Remain the Same
D.5-17	162.7	175	P5	5	200	YES	Remain the Same
D.5-16	162.7	175	P5	5	200	YES	Remain the Same
D.5-15	162.7	175	P5	5	200	YES	Remain the Same
D.5-14	172.0	175	P5	5	200	YES	Remain the Same
B.8-20	74.7	85	P3	3	120	YES	Remain the Same
B.8-19	241.9	225	P7	7	280	YES	Remain the Same
B.8-18	241.9	225	P7	7	280	YES	Remain the Same
B.8-17	241.9	225	P7	7	280	YES	Remain the Same
B.8-16	241.9	225	P7	7	280	YES	Remain the Same
B.8-15	241.9	225	P7	7	280	YES	Remain the Same
B.8-14	261.9	210	P6	6	240	NO	Change to P7
Aa.1-20	50.6	65	P3	3	120	YES	Remain the Same
Aa.1-19	162.7	175	P5	5	200	YES	Remain the Same
Aa.1-18	162.7	175	P5	5	200	YES	Remain the Same
Aa.1-17	162.7	175	P5	5	200	YES	Remain the Same
Aa.1-16	162.7	175	P5	5	200	YES	Remain the Same
Aa.1-15	162.7	175	P5	5	200	YES	Remain the Same
Aa.1-14	172.0	175	P5	5	200	YES	Remain the Same
A.9-20	74.7	85	P3	3	120	YES	Remain the Same
A.9-19	241.9	225	P7	7	280	YES	Remain the Same
A.9-18	241.9	225	P7	7	280	YES	Remain the Same
A.9-17	241.9	225	P7	7	280	YES	Remain the Same
A.9-16	241.9	225	P7	7	280	YES	Remain the Same
A.9-15	241.9	225	P7	7	280	YES	Remain the Same
A.9-14	261.9	225	P6	6	240	NO	Change to P7

Piping Value Engineering Depth

Structural Breadth

Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Existing Pile Cap Foundation Costs

				Material				Equipment						Material				Equipment	
Item	Qty.	Unit	Material	Total	Labor	Labor Total	Equipment	Total	Total	Item	Qty.	Unit	Material	Total	Labor	Labor Total	Equipment	Total	Total
3000 psi	101.00	CY	207	\$ 20,907.00	120	\$ 12,120.00	0.73	\$ 73.73	\$ 33,100.73	3000 PSI	103.12	CY	207	\$ 21,346.41	120	\$ 12,374.73	0.73	\$ 75.28	\$ 33,796.42
concrete										Concrete									
Concrete	101.00	CY			34.5	\$ 3,484.50	1.15	\$ 116.15	\$ 3,600.65	Concrete	103.12	CY			34.5	\$ 3,557.73	1.15	\$ 118.59	\$ 3,676.33
Placement										Placement									
Formwork	1604	SFCA	2.85	\$ 4,570.61	5.05	\$ 8,098.80			\$ 12,669.41	Formwork	1607	SFCA	2.85	\$ 4,579.48	5.05	\$ 8,114.51			\$ 12,693.98
#8 Rebar	6.79	TON	960	\$ 6,520.78	470	\$ 3,192.47			\$ 9,713.25	#8 Rebar	6.86	TON	960	\$ 6,582.30	470	\$ 3,222.58			\$ 9,804.88
Helical Piles	154	EA	N/A	+ -,	N/A	+	N/A		\$ 174,730.77	Helical Piles	156	EA	N/A		N/A		N/A		\$ 177,000.00
			,		, · · ·				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
Total with Location Factor				\$ 230,307.58	Total with Loo	cation Fac	tor							\$ 233,417.03					

Proposed Pile Cap Foundation Costs

Existing Pile Cap Costs: \$230,408

Proposed Pile Cap Costs: \$233,417

Cost Difference: *additional* \$3,423 *to project cost* (**1.46%** *increase*)

Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations
Conclusion

Schedule Implications

- Time added for •

 - •

Total time added to schedule: 0.6 days

Effects on Schedule

Increased concrete, rebar and formwork: 0.1 days 2 additional helical piles: 0.5 days

Proposed Pile Cap Foundation Costs

				Material				Equipment	
Item	Qty.	Unit	Material	Total	Labor	Labor Total	Equipment	Total	Total
3000 PSI	103.12	CY	207	\$ 21,346.41	120	\$ 12,374.73	0.73	\$ 75.28	\$ 33,796.42
Concrete									
Concrete	103.12	CY			34.5	\$ 3,557.73	1.15	\$ 118.59	\$ 3,676.33
Placement									
Formwork	1607	SFCA	2.85	\$ 4,579.48	5.05	\$ 8,114.51			\$ 12,693.98
#8 Rebar	6.86	TON	960	\$ 6,582.30	470	\$ 3,222.58			\$ 9,804.88
Helical Piles	156	EA	N/A		N/A		N/A		\$ 177,000.00
Total with Loo	cation Fac	tor							\$ 233,417.03

Proposed Pile Cap Costs: *\$233,417*

Cost Difference: *additional* \$3,423 *to project cost* (**1.46%** *increase*)

Piping Value Engineering Depth Structural Breadth

Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. **Construction Management** Advisor: Dr. Somayeh Asadi

Acoustical Breadth: Classroom Acoustical Analysis

Introduction	Reasons for A
Piping Value Engineering Depth	• Owner wants
Structural Breadth	• Good design
Acoustical Breadth	
BIM Research	• Variety of ba
Recommendations	Naylor RSchool at
Conclusion	 Hallways A discount
	 Adjacent

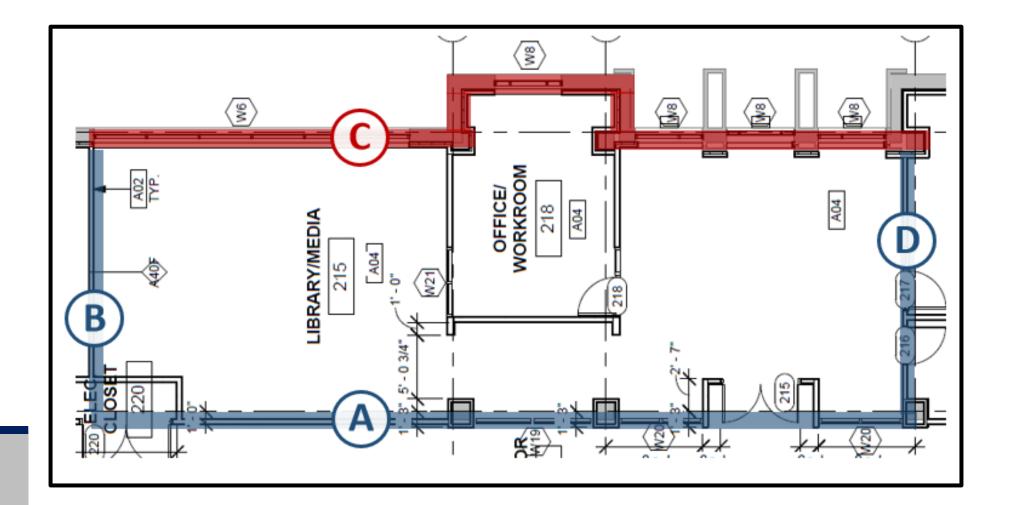
Acoustical Breadth Introduction

Analysis:

- its best possible learning environment for students
- in creates quieter rooms and could limit distractions
- background noise sources such as
- Road
- athletic fields
- VS
- nt classrooms
- Music room

Piping Value Engineering Depth

Structural Breadth


Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. **Construction Management** Advisor: Dr. Somayeh Asadi

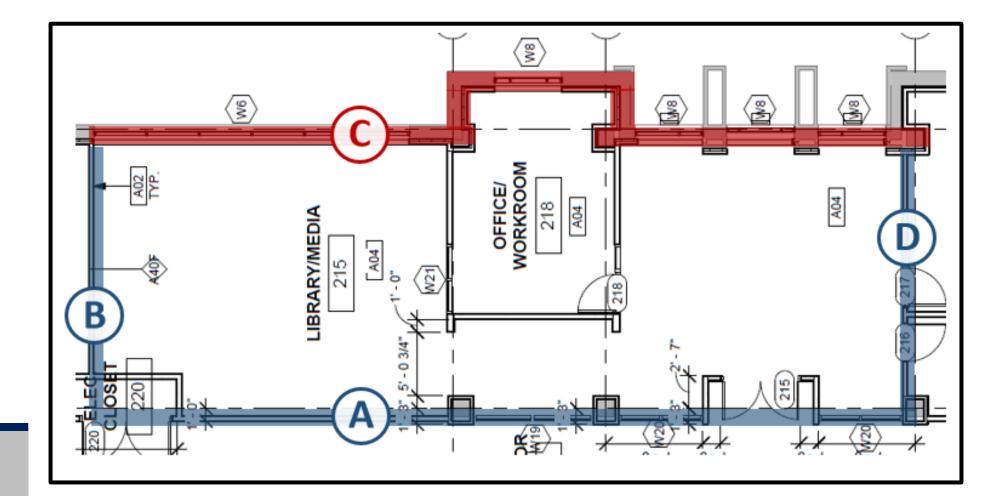
Library Acoustical Analysis

Potential Background Noise

Wall A: Hallway Wall C: Naylor Road Wall D: Classroom Floor-Ceiling Assembly: Art Room with Kiln

Piping Value Engineering Depth

Structural Breadth


Acoustical Breadth

BIM Research

Recommendations

Conclusion

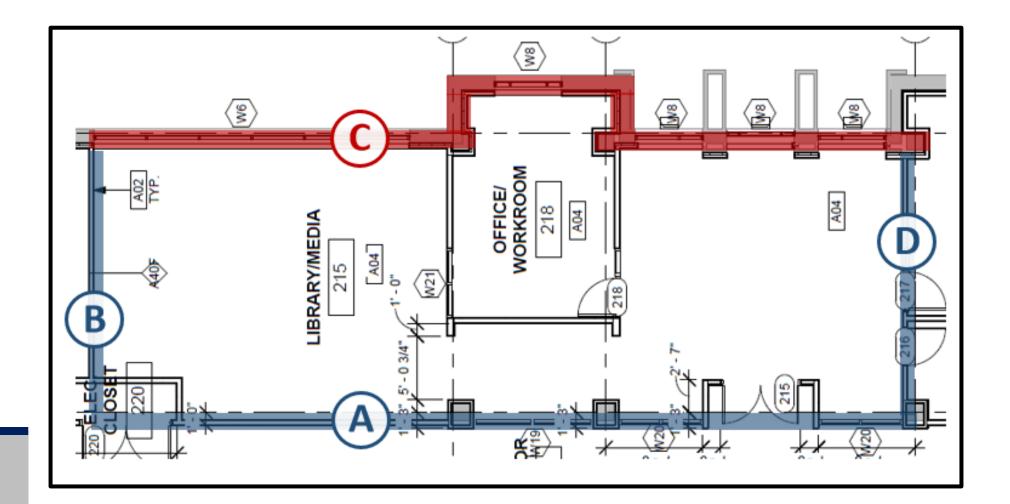
Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Library Acoustical Analysis

Partition	Wall/Material Type (Actual)	Adjacent Rooms	Recommended STC	Actual STC	Meets RQMT?
WALLA					
Wall	A42A	Hallway	45	56	YES
WALL B					
Wall	A40F	Closet	45	49	YES
WALL C					
Wall	A40F	Personal Toilet Rm	53	49	NO
WALL D					
Wall	A40F	Records/ Mailroom	45	49	YES
WALL E (C	OMPOSITE)				
Compos	ite STC Rating		40	36	
Wall	F30E	Naylor Rd	N/A	45	NO
Window	W6		N/A	35	
WALL F					
Wall	A42A	Naylor Rd	40	56	YES
CEILING/F	LOORING ASSEM	1BLY			
Ceiling	N/A	Visual Arts, Kiln	60	53	NO
Flooring	N/A	Storage Rm	45	53	YES

Piping Value Engineering Depth

Structural Breadth


Acoustical Breadth

BIM Research

Recommendations

Conclusion

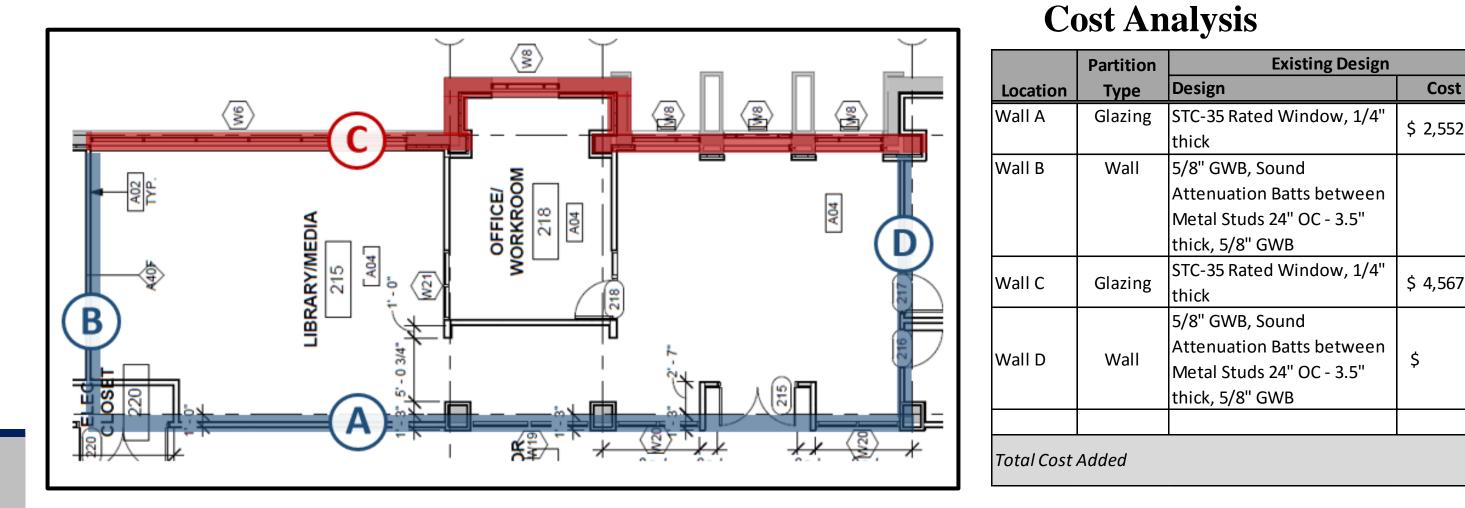
Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. **Construction Management** Advisor: Dr. Somayeh Asadi

Library Acoustical Analysis

Does Design Meet Recommendations? Wall A: Yes Wall B: No, needs to meet STC-49 Wall C: No, needs to meet STC-53 Wall D: Yes Floor-Ceiling Above: No, needs to meet STC-60 **Floor-Ceiling Below:** Yes

Piping Value Engineering Depth

Structural Breadth


Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Library Cost Analysis

	Recommended Desi	gn			
t	Design		Cost	Co	st Increase
2.14	STC-45 Windows, add 2" Air space and 3/16" thick pane	\$	1,343.66	\$	(1,208.48)
	Add 1/2" gypsum layer on each side of wall	\$	222.36	\$	222.36
7.60	STC-45 Windows, add 2" Air space and 3/16" thick pane	\$	8,300.00	\$	3,732.40
_	Add 1/2" gypsum layer on each side of wall	\$	252.96	\$	252.96
				\$	2,999.24

Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations
Conclusion

Room 108: Pre-kindergarten Classroom

Deficiencies

- Wall adjacent to bathrooms is below recommended STC-53
- Composite exterior wall adjacent to Naylor Rd is below • recommended STC-40
- Floor-ceiling assembly adjacent to art room with kiln is below recommended STC-60

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Remaining Rooms Cost Analyses

Cost Analysis

	Partition	Existing Design Recommen			gn		
Location	Туре	Design	Cost	Design	Cost	Cos	t Increase
Wall C	Wall	5/8" GWB, Sound Attenuation Batts between Metal Studs 24" OC - 3.5" thick, 5/8" GWB	\$ -	Add 1/2" gypsum layer on each side of wall	\$ 211.14	\$	211.14
Wall E	Glazing	STC-35 Rated Window, 1/4" thick	\$ 5,460.00	STC-45 Windows, add 2" Air space and 3/16" thick pane	\$ 9,800.00	\$	4,340.00
Ceiling- Floor Assembly	Assembly	Carpeting, Composite Decking with 4" concrete, 1'-9" plenum, acoustical ceiling tile	\$ -	Add 3" fiberglass insulation within plenum space	\$ 64.00	\$	64.00
Total Cost .	Added					\$	4,615.14

Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations

Conclusion

Room 319: Music Room

Deficiencies

recommended STC-60

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Remaining Rooms Cost Analyses

- Walls adjacent to elevator shaft is below recommended STC-45
- Floor-ceiling assembly adjacent to art room with kiln is below

Cost Analysis

	Partition	Existing Design		Recommended Des	ign	
Location	Туре	Design	Cost	Design	Cost	Cost Increase
Wall B	Wall	3/4" GWB on Interior Side, "CH Type Studs - Metal Studs 24" OC, 1" GWB on Shaft Side	\$-	Add 1/2" gypsum layer on each side of wall	\$ 111.60	\$ 111.60
Ceiling- Floor Assembly	Floor Assembly	Carpeting, Composite Decking with 4" concrete, 1'-9" plenum, acoustical ceiling tile	\$ -	Add 3" fiberglass insulation within plenum space	\$ 384.00	\$ 384.00
Total Cost	Added					\$ 495.60

Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations
Conclusion

Deficiencies

- Wall adjacent to bathrooms is below recommended STC-53
- Wall adjacent to classroom is below recommended STC-53
- Composite exterior wall adjacent to athletic fields is below recommended STC-40

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Remaining Rooms Cost Analyses

Room 1017: Pre-kindergarten Classroom

Cost Analysis

	Partition	Existing Design		Recommended Design			
Location	Туре	Design	Cost	Design	Cost	Cos	t Increase
Wall C	Glazing	STC-35 Rated Window, 1/4" thick	\$ 2,479.40	STC-45 Windows, add 2" Air space and 3/16" thick pane	\$ 3,911.60	\$	1,432.20
Wall D	Wall	5/8" GWB, Sound Attenuation Batts between Metal Studs 24" OC - 3.5" thick, 5/8" GWB	\$ -	Add 1/2" gypsum layer on each side of wall	\$ 104.04	\$	104.04
Wall E	Wall	5/8" GWB, Sound Attenuation Batts between Metal Studs 24" OC - 3.5" thick, 5/8" GWB	\$ -	Add 1/2" gypsum layer on each side of wall	\$ 278.46	\$	278.46
Total Cost .	Added					\$	1,814.70

Piping Value Engineering Depth

Structural Breadth

Acoustical Breadth

BIM Research

Recommendations

Conclusion

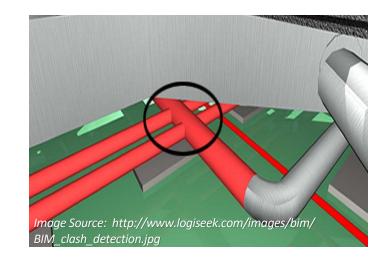
Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Research Topic BIM Use on Small Projects

Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations

Conclusion

Reasons for Analysis:

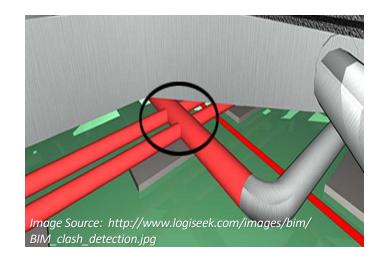

- Tompkins Builders used BIM on a limited basis for this project because of its size.
- There is a general misconception in the construction field that BIM is not beneficial for small projects.

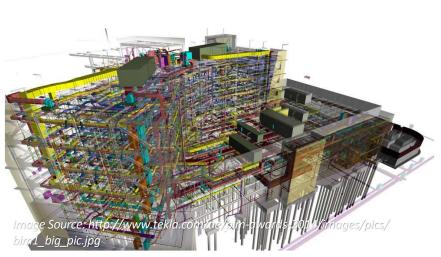
Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

BIM on Small Projects

Image Source: http://4.bp.blogspot.com/-rnYUwnUZ4Pk/U3Bxx7C7nkl/ AAAAAAAAAJQ/pGUzy-Kw-Tg/s1600/bim-article-wordle.png

Introduction	Analysis Inc
Piping Value Engineering Depth	Analyzing
Structural Breadth	• Analyzing
Acoustical Breadth	• •
BIM Research	 Professiona managers' e
Recommendations	• A noluzina
Conclusion	• Analyzing son K-12 ed


BIM on Small Projects


ncluded:

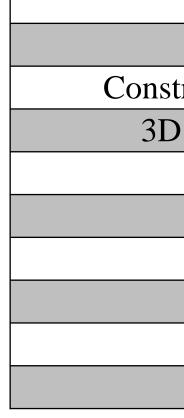
- g case studies for small projects using BIM
- g case studies for small firms using BIM
- nal articles about BIM on small projects and project 'experiences
- g survey-based research that occurred for BIM use educational buildings

Image Source: http://4.bp.blogspot.com/-rnYUwnUZ4Pk/U3Bxx7C7nkI/ AAAAAAAAAJQ/pGUzy-Kw-Tg/s1600/bim-article-wordle.png

Piping Value Engineering Depth

Structural Breadth

Acoustical Breadth


BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. **Construction Management** Advisor: Dr. Somayeh Asadi

Conclusions

Recommended Minimum Requirements for BIM Use on Small projects

Building Systems Analysis

Site Utilization Planning

Construction System Design (Virtual Mock-up)

3D Control and Planning (Digital Layout)

3D Coordination

Sustainability (LEED) Evaluation

Design Reviews

Phase Planning

Cost Estimation

Existing Conditions Modeling

BIM Uses less essential on small projects

- inning/Scheduling
- cam Validation
- ode Checking
- Scanning
- abrication
- ture Renovations
- ding Performance
- Modeling
- /Cost Estimate

Piping Value Engineering Depth Structural Breadth Acoustical Breadth BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Final Recommendations

Introduction **Piping Value Engineering Depth Structural Breadth Acoustical Breadth BIM Research Recommendations**

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. **Construction Management** Advisor: Dr. Somayeh Asadi

Piping Value Engineering Depth

- Schedule time savings

Structural Breath

- additional loads
- Limited added costs and time

Final Recommendations

Initial cost and maintenance cost savings

Recommendation: Use PVC Piping for the domestic water piping system

Existing pile cap design nearly is capable of supporting

Recommendation: Implement proposed foundation design

Acoustical Breadth

- Costs of acoustical redesign would be high
- Consider added costs of acoustical consultant

Recommendation: Implement necessary acoustical redesign

Potential added time to an already very busy schedule

Introduction
Piping Value Engineering Depth
Structural Breadth
Acoustical Breadth
BIM Research
Recommendations
Conclusion

- Dr. Somayeh Asadi
- Dr. Michelle Vigeant
- Tompkins Builders; especially Jessica Marine, Pete Kapsidelis, Patrick Bynum, and Denzel Golden

two semesters.

Conclusion

I would like to take the opportunity to thank the following people for their contributions to my thesis.

In addition, thank you to Professor Bowers and Professor Parfitt for your guidance throughout the past

Piping Value Engineering Depth

Structural Breadth

Acoustical Breadth

BIM Research

Recommendations

Conclusion

Ryan DeJesso Thesis Presentation: Stanton Elementary School, Washington D.C. Construction Management Advisor: Dr. Somayeh Asadi

Conclusion

Questions?

Final Recommendations Recap:

Value Engineering Recommendation: Use PVC Piping for the domestic water piping system

Structural Breath Recommendation: Implement proposed foundation design

Acoustical Breath Recommendation Implement acoustical changes